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Abstract

We present a dynamic ray tracing program for a spherically symmetric Earth that may be used to compute Fréchet
kernels for traveltime and amplitude anomalies at finite frequency. The program works for arbitrarily defined phases
and background models. The numerical precisions of kinematic and dynamic ray tracing are optimized to produce trav-
eltime errors under 0.1 s, which is well below the data uncertainty in global seismology. This tolerance level is obtained for
an integration step size of about 20 km for the most common seismic phases. We also give software to compute ellipticity,
crustal and topographic corrections and attenuation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Global tomography studies using seismic body waves such as P and S were so far mostly based on ray the-
ory, a high-frequency approximation to the elastodynamic wave equation. Ray theory ignores wave scattering
and wavefront healing effects, which render the traveltime anomalies dependent on the Earth structure in a 3D
region around the geometrical ray, rather than limiting the sensitivity to an infinitesimally narrow ray path.
Recently, Dahlen et al. [4] formulated an efficient theory for 3D traveltime sensitivity (or Fréchet) kernels,
using a paraxial approximation and dynamic ray tracing [19] to reduce the computational effort. The ray trac-
ing software that formed the starting point for the program described in this paper was written by Hung [7,8]
and applied by Montelli et al. [13,14,12] in global inversions of delay times of compressional and shear waves.
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The program described in this paper is a largely rewritten version of the earlier software. We have extended
the versatility of the code by allowing seismic phases and the background model to be defined arbitrarily by
the user. We have also added corrections for crustal structure, topography and ellipticity, and added addi-
tional output, such as t*. The resulting program raydyntrace.f is available from http://geodynam-
ics.org/cig/software/packages/.

Extensive comments and documentation have been added to make the code user-friendly. In this paper we
describe the theory and present some results of the tests used to validate the code.

2. Overview

In finite-frequency tomography, the linearized relationship between the observed delay of compressional
waves dT , and the relative deviations dcP=cP in the compressional velocity is given by a volume integral
[4]:
dT ¼
Z

V
KP ðrxÞ

dcP

cP
d3rx: ð1Þ
Theoretically, the integration volume V is over the whole Earth. In practice, V is the volume in which dcP=cP

has an observable contribution to dT , and is approximately the 3D Fresnel volume in the vicinity of the geo-
metrical ray. KP ðrxÞ is the Fréchet or ‘banana–doughnut’ kernel at a scatterer point rx:
KP ðrxÞ ¼ �
1

2pcP ðrrÞcP ðrxÞ
Rrs

RxrRxs

PP
s

PP �
R1

0
x3j _mðxÞj2 sin½xDT ðrxÞ � DUðrxÞ�dxR1

0
x2j _mðxÞj2dx

; ð2Þ
where _mðxÞ is the spectrum of the observed compressional waveform, PP and PP
s are the source radiation

patterns for the direct ray and the ray to scatterer, respectively, and DU is the phase shift due to passage
through caustics or supercritical reflection. The kernel requires computation of the traveltimes from source s
and receiver r to the scatterer x to obtain the ‘detour traveltime’ DT ¼ T xs þ T xr � T rs, and the geometrical
spreading factors Rrs;Rxs and Rxr, where the subscripts rs, xs and xr represent the ray paths from source to
receiver, source to scatterer, and receiver to scatterer, respectively. DT and R are needed for every possible
ray path rs, xs and xr. The ‘background’ model, for which these quantities are evaluated must be piecewise
smooth, such that ray theory is valid. If not, (2) cannot be used, but kernels can still be computed using
finite-difference or spectral element techniques [17]. Very similar expressions exist for amplitudes [3], and
the kernels for shear waves are obtained by replacing cP ;R;P and DT by the equivalent quantities for shear
waves.

To compute R and DT , we first determine the direction in which the ray departs from the source, which can
in principle be done using kinematic ray tracing. For a three-dimensional background model it requires the
determination of the two angles that determine the ray direction at the source. Doing this by trial-and-error
(‘shooting’) is notoriously difficult. Nolet et al. [15] use a combination of graph-theoretical, ray-bending and
dynamic ray tracing algorithms to compute the detour time and geometrical spreading in local models, but
such techniques are too inefficient to be used on a global scale. We therefore restrict ourselves to a spherically
symmetric background Earth model. This not only simplifies the equations, but also reduces the problem of
finding the correct ray direction to the determination of just one angle or, equivalently, a ray parameter.

There are essentially two methods to compute the kernels in a spherically symmetric Earth. Calvet and
Chevrot [1] set up a table of traveltimes and geometrical spreading for sources at every depth between the sur-
face and the Earth’s center, or deepest structure of interest, and epicentral distance traveled. Because of the
amplitude reciprocity
cP ðrxÞRrx ¼ cP ðrrÞRxr;
this is sufficient to compute all necessary geometrical spreading factors by interpolation. An alternative, used
in this paper, is to avoid interpolation and use a paraxial approach with dynamic ray tracing. It has the advan-
tage that all quantities are quickly available once the dynamic ray tracing has been performed, and requires
virtually no extra storage. The disadvantage is the introduction of the paraxial approximation, which assumes
that the wavefront near the direct ray has a parabolic shape. We also assume that the geometrical spreading R

http://geodynamics.org/cig/software/packages/
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computed for the geometrical ray is constant over the wavefront in the neighbourhood of the ray. More spe-
cifically, we approximate DT and R using only information computed for the geometrical ray [4]:
Fig. 1.
Vector
DT ¼ 1

2
qT ðHxs þH xrÞq; ð3Þ

lnR2
xs ¼

Z l

0

c trðH l0sÞdl0; lnR2
xr ¼

Z l

L
c trðH l0rÞdl0; ð4Þ
where q ¼ ðq1; q2Þ
T and l are ray centered coordinates of scatterer x (Fig. 1), and c is the seismic velocity. H xs

and Hxr are 2 · 2 Hessian matrices from source and receiver, respectively, with
H ij ¼
o

2T
oqioqj

�����
q¼0

: ð5Þ
H l0s and H l0r are evaluated at ðl0; 0; 0Þ along the ray path 0 6 l0 6 L. trð�Þ denotes the trace of the matrix. The
forward and backward Hessian matrices are obtained by solving the corresponding Riccati equations [19]:
dH xs

dl
þ cHxsHxs ¼ �

1

c2
Vx; � dHxr

dl
þ cHxrHxr ¼ �

1

c2
Vx; ð6Þ
where Vx is a 2 · 2 matrix with V ij ¼ o2c=oqioqj evaluated at ðl; 0; 0Þ.
Thus, we only need to do the forward and backward ray tracing on the geometrical ray to obtain DT and R.

3. Numerical procedures

3.1. Hessian matrices

In this section, we describe the numerical procedure to solve the Riccati equations (6) in a spherically sym-
metric Earth, taking the forward (first) Riccati equation in (6) as an example. In order to solve it, we need the
initial condition
Hxs !
1

csl
I as l! 0; ð7Þ
where cs is the velocity at source, l is shown in Fig. 1, and I is the identity matrix. A convenient numerical
scheme to deal with the non-linearity of (6), as well as the divergence at source (see (7)), is to decompose
Hxs as [18]
Hxs ¼ PQ�1: ð8Þ

Substituting (8) into the first equation in (6), we get a first-order system:
dP

dl
¼ � 1

c2
VxQ;

dQ

dl
¼ cP: ð9Þ
Accordingly, the initial condition (7) becomes
Pðl ¼ 0Þ ¼ I ; Qðl ¼ 0Þ ¼ 0: ð10Þ
(source)s

(receiver)r

q1

q2

(scatterer)

l

q

x

geometrical ray

Ray centered coordinates of scatterer rx ¼ ðl; q1; q2Þ
T , where 0 6 l 6 L is the length of the geometrical ray measured from source.

s l; q1 and q2 are mutually perpendicular, with l and q1 in the source–receiver plane.
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Because of the spherical symmetry, the differentiation with respect to q2 always gives zero. Therefore Hxs is
diagonal, and so are the P;Q in (8):
Fig. 2.
p=2 on
P ¼
P 1 0

0 P 2

� �
; Q ¼

Q1 0

0 Q2

� �
:

From (8):
Hxs ¼
P 1=Q1 0

0 P 2=Q2

� �
: ð11Þ
To solve for P 1; P 2;Q1;Q2 from (9) and (10), we use a polar coordinate system in the source–receiver plane and
change the independent variable from l to / (Fig. 2). Using the relations d/=dl ¼ sin i=r and p ¼ r sin i=c, the
first-order system (9) becomes
dP 1

d/
¼ � p

c
o2c
or2
þ 1

r
oc
or

cot2i
� �

Q1;
dP 2

d/
¼ � r

pc3

oc
or

Q2;

dQ1

d/
¼ r2

p
P 1;

dQ2

d/
¼ r2

p
P 2;

ð12Þ
the initial conditions (10) become
P 1ð/ ¼ 0Þ ¼ P 2ð/ ¼ 0Þ ¼ 1; Q1ð/ ¼ 0Þ ¼ Q2ð/ ¼ 0Þ ¼ 0; ð13Þ
and the continuity conditions are
cos iP 1 þ
p2

r2

oc
or
� 1

rc

� �
Q1

� �þ
�
¼ 0;

P 2 �
cos i
rc

Q2

� �þ
�
¼ 0;

Q1

cos i

� �þ
�
¼ ½Q2�

þ
� ¼ 0;

ð14Þ
where + and � represent the evaluation on the outgoing and incoming rays at the discontinuity depth, respec-
tively. A fourth-order Runge–Kutta method is used to solve the first-order ODE system (12)–(14).

In a similar way, we can solve the backward (second) Riccati equation in (6) for Hxr. Thus, we have reduced
the kinematic two-point ray tracing to be only on the forward (from source to receiver) and backward (from
receiver to source) geometrical rays.

3.2. Avoiding backward two-point ray tracing

Dahlen et al. [4] point out that some extra efficiency can be obtained by avoiding the backward two-point
ray tracing and computing Hxr while doing the forward ray tracing. Here we give the results necessary for the
numerical procedure.
r
φ

i

receiver

ray

geometrical

source

Polar coordinates r ¼ ðr;/Þ in the source–receiver plane. / = 0 at source and / ¼ D at receiver. The incident angle i is larger than
the downgoing leg and smaller than p=2 on the upgoing leg.
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Introduce a propagator matrix
Pð/; 0Þ ¼

eQ1ð/Þ 0 Q1ð/Þ 0

0 eQ2ð/Þ 0 Q2ð/ÞeP 1ð/Þ 0 P 1ð/Þ 0

0 eP 2ð/Þ 0 P 2ð/Þ

0
BBBBB@

1
CCCCCA;
where eP 1; eP 2; eQ1; eQ2 satisfy (12) and (14) with different initial conditions
eP 1ð0Þ ¼ eP 2ð0Þ ¼ 0; eQ1ð0Þ ¼ eQ2ð0Þ ¼ 1: ð15Þ

Conditions (15) ensure that P is a propagator matrix because Pð0; 0Þ ¼ I , and the columns of P are solutions
to (12). We can thus express any solution as
Hxsð/Þ ¼ Pð/; 0ÞHxsð0Þ; Hxrð/Þ ¼ Pð/;DÞHxsðDÞ;

with / = 0 at source and / ¼ D at receiver. The backward propagator Pð/;DÞ can be obtained from the for-
ward propagator Pð/; 0Þ:
Pð/;DÞ ¼ P�1ðD;/Þ ¼ ðPðD; 0ÞPð0;/ÞÞ�1 ¼ Pð/; 0ÞP�1ðD; 0Þ:

The final result can be written as
Hxr ¼
P 3=Q3 0

0 P 4=Q4

� �
; ð16Þ
and P 3; P 4;Q3;Q4 are given by
P 3ð/Þ ¼ P 1ð/ÞeQ1ðDÞ � eP 1ð/ÞQ1ðDÞ;

P 4ð/Þ ¼ P 2ð/ÞeQ2ðDÞ � eP 2ð/ÞQ2ðDÞ;

Q3ð/Þ ¼ eQ1ð/ÞQ1ðDÞ � Q1ð/ÞeQ1ðDÞ;

Q4ð/Þ ¼ eQ2ð/ÞQ2ðDÞ � Q2ð/ÞeQ2ðDÞ:

ð17Þ
To summarize, we have reduced the problem to one such that only one forward two-point ray tracing is
needed for each source–receiver pair. To obtain the information near the geometrical ray, we solve Eqs.
(12) and (14) with initial conditions (10) and (15) for ðP 1;Q1Þ; ðP 2;Q2Þ; ðeP 1; eQ1Þ; ðeP 2; eQ2Þ, and obtain the Hes-
sian matrices Hxs and H xr by (11) and (16), respectively. Finally, one can get the detour time from (3).

One difficulty to be expected is the numerical instability caused by the divergence of H near source and
receiver. As Q1 ! 0, small errors in Q1 blow up to a large error in Hxs. In fact, the initial conditions (13) make
Hxs infinite at source; and (17) indicates that H xr is infinite at receiver. To solve this problem, we assume a
small homogeneous sphere around source or receiver and apply condition (7) in that sphere. A similar numer-
ical fix could be used at other points where Q1 or Q3 ! 0, such as near caustics for the PP wave, but we have
not seen an urgent need for that in computations done so far.

Note that DT ! 0 as one approaches source or receiver, so that the integrand in (2) remains finite (but mul-
tivalued in their singular points themselves).

3.3. Geometrical spreading

Further efficiency can be obtained by avoiding computing individual geometrical spreading factors from
(4). In the traveltime and amplitude kernels, the geometrical spreading factors appear in the form of
Rrs=RxsRxr, and this term can be obtained from the determinant of the Hessian matrices [16,4]:
Rrs

RxsRxr
¼ cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðHxs þHxrÞj

p
; ð18Þ
where cr is the velocity at receiver.
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3.4. Kinematic two-point ray tracing

To find all rays arriving at the receiver from a given source we use kinematic ray tracing [2]. Again we use
the polar coordinate system in the source–receiver plane (Fig. 2):
di
dl
¼ sin i

c
dc
dr
� c

r

� �
;

d/
dl
¼ sin i

r
;

dr
dl
¼ cos i;

dT
dl
¼ 1

c
;

ð19Þ
or
di
dr
¼ tan i

1

c
dc
dr
� 1

r

� �
;

d/
dr
¼ tan i

r
;

dl
dr
¼ 1

cos i
;

dT
dr
¼ 1

c cos i
:

ð20Þ
Away from a discontinuity, the integration is done with ray distance l as independent variable, using (19).
Near a discontinuity, we use r and (20) instead, such that the endpoint of the integration step coincides exactly
with the discontinuity. At a discontinuity, continuity conditions are used:
½r�þ� ¼ 0; ½sin i=c�þ� ¼ 0;
where + and � represent the evaluation on the outgoing and incoming rays at the discontinuity depth, respec-
tively. The second continuity condition is the Snel’s law. A fourth-order Runge–Kutta method is used to solve
(19) and (20).

The integration is started with a ray angle is at the source. To find the is from a source at a specified depth
that has the ray hit the receiver, we pre-compute a table of ði;DÞ with the step size in D smaller than a specified
precision (we found that 0.3� works well with common global models such as AK135 or IASP91). We first find
the interval D1 < D� < D2 that brackets the receiver distance D*. An iterative linear interpolation scheme is
then used to find is:
ikþ1 ¼ ik�1 þ
D� � Dk�1

Dk � Dk�1

ðik � ik�1Þ:
This is repeated for every bracketing interval if there is more than one ray arriving at distance D*.

3.5. Traveltime corrections

We may apply corrections to the computed traveltimes to account for known deviation from spherical sym-
metry in the Earth, and bring the predicted time closer to that of a 3D Earth. The program computes the ellip-
ticity, crustal, and topographic corrections of traveltimes, denoted by dT ell; dT cru and dT top, respectively. The
traveltime after correction is
T cor ¼ T BG þ dT ell þ dT cru þ dT top; ð21Þ

where T BG is the predicted traveltime for the spherically symmetric background model.

3.5.1. Crustal corrections

The resolution length of global tomography is much larger than the wavelength of the 3D structures in the
crust. Therefore, we apply crustal corrections based on a known crustal model instead of resolving the crustal
structure in the tomography (inversion) part.

We denote traveltimes in the crust by lower case ‘t’. Crustal corrections are computed by first subtracting
the traveltime in the background crust ðtBGÞ, and then adding the traveltime in the known 3D crustal model
ðt3DÞ [12]:
dT cru ¼ �tBG þ t3D: ð22Þ
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For receivers and surface reflection points:
Fig. 3.
model
radius
radius
tBG ¼
X

segments

Z a

rd

j cos ijdr
cBG

; t3D ¼
X

segments

Z aþh3D

rd

j cos ijdr
c3D

: ð23Þ
For shallow sources in the crust with radius rs > rd :
tBG ¼
X

segments

Z rs

rd

j cos ijdr
cBG

; t3D ¼
X

segments

Z rs

rd

j cos ijdr
c3D

: ð24Þ
The significance of rd, a, and h3D is explained in Fig. 3, which also illustrates the integral intervals. The sum is
over all ray segments that are above rd. cBG and c3D are the velocities of the background model and the 3D
crustal model, respectively. We use the 3D crustal model CRUST2.0 by Laske (available from http://ma-
hi.ucsd.edu/Gabi/rem.dir/crust/crust2.html).

3.5.2. Topographic corrections

Even though model CRUST2.0 contains topography, the averaging over 2� · 2� areas still leaves a residual
topography for stations. The residual topography is small, so that the topographic correction can be approx-
imated by
dT top ¼ ðh� h3DÞ
j cos ij

c3D

; ð25Þ
where the angle i and the velocity c3D are assumed constant and equal to their values at the surface. The sig-
nificance of h3D and h is explained in Fig. 3. Since the Fresnel zone for surface reflections (such as PP or SS) is
rather large, we assume that the average topography of CRUST2.0 is adequate to predict topography effects
and we consider h ¼ h3D for such reflections.

3.5.3. Ellipticity corrections

Following Dziewonski and Gilbert [5] we use Fermat’s Principle to compute the effect of the elliptical per-
turbations on a ray in the spherical background model. The ellipticity correction is then the sum of contribu-
tions due to lengthening or shortening of the ray at its ends, displacements of discontinuities along the ray, and
an integral over velocity perturbations ðoc=orÞdr due to the elliptical perturbation dr:
dT ell ¼
1

p

Z D

0

r3

c3

dr
r

dc
dr

d/�
X

d

dr
cos i1

c1

� cos i2

c2

� �
;

where / is the polar coordinate in Fig. 2. The summation is over all discontinuities d, the + sign is to be used
for transmitted rays and topside reflections like PcP, and the � sign is for bottomside reflections like PP. In-
dex 1 is for the incoming, 2 for the outgoing ray.
BG
surface

BG Moho

rs

dr
3D Moho (CRUST2.0)

3D surface (CRUST2.0)

receivera+h
a

3D

sourceBGt

tBG

topδT

t3D

t3D

a+h

Integral intervals (extended by arrows) for crustal and topographic correction calculation ((23)–(25)). ‘BG’ represents background
; ‘3D’ represents the 3D crustal model. Solid arrows are for receivers and surface reflections; dashed arrows are for sources. The
of each boundary is denoted, with rd being the deeper one of the background model Moho and the 3D crust Moho, rs the source

, a the sea level of the background model (6371 km), h3D the elevation of the 3D crust surface, and h the elevation of the receiver.
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Fig. 4. Ray paths of global phases produced by the kinematic ray tracing of the program, for a 5-km-deep earthquake. The shaded areas
(from dark to white) represent inner core, outer core, and mantle. The dotted circle indicates the 660 km discontinuity. Solid lines represent
P waves, and dashed lines represent S waves.
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Fig. 5. Ray paths of depth phases produced by the kinematic ray tracing of the program, for a 600-km-deep earthquake. Notations are the
same as in Fig. 4.
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The deflection dr is a function of depth and latitude:
dr
r
� �ðrÞ 1

3
� cos2 h

� �
;

where �ðrÞ is the ellipticity of the Earth. When tracing the ray, the value of cos h can be found if we realize that
it is simply the z-component of the unit vector r̂ to that point:
r̂ ¼ r̂p sin /þ r̂s cos /:
r̂p is the vector in the ray plane orthogonal to the source unit vector r̂s:
r̂p ¼
r̂r � r̂s cos D
ĵrr � r̂s cos Dj ;
and r̂r is the receiver unit vector, D ¼ cos�1ðr̂s � r̂rÞ. This approach differs from that given by Dziewonski and
Gilbert, who express dr in terms of associated Legendre functions. Our algorithm is more efficient when one is
actually tracing rays.
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3.5.4. Dispersion corrections

A direct byproduct of kinematic ray tracing is that it enables us to compute t*:
t� ¼
Z L

0

dl
cQ

;

where the integration is along the ray path and Q is the quality factor. t* can be used to correct traveltimes for
dispersion by using
dT dis ¼ �
t�

p
ln

x
x0

� �
;

where x0 is the reference frequency for the velocity model. If data are collected in different frequency bands,
this dispersion correction must be added to the corrections in (21).

4. Numerical tests

To examine the validity and generality of the program, we performed extensive numerical tests for different
source and receiver locations, different phases, and different background models. This section discusses the
major results of these tests. Since computational errors for P waves are generally smaller than those for S

waves, our emphasis will be ‘worst case’, i.e. mostly on S waves.

4.1. Ray tracing examples

The most important function of the program is the kinematic and dynamic ray tracing in the 1D back-
ground model. Our goal is to make the ray tracing accurate for all imaginable phases. The program accepts
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as input a user-defined ray trajectory. Ray types are defined by segments that specify the starting depth of the
segment, the nature of the starting point (source, reflection, transmission or turning point) the type of wave (P
or S), and the number of polar passages, which may be >0 for waves such as PPP for which D > 180�. This
codification of rays gives maximum flexibility in the software to accept all possible rays. Figs. 4 and 5 show the
ray paths of different phases produced by the kinematic ray tracing of the program, for a shallow earthquake
and a deep earthquake, respectively. Such figures served as a first global check on the correctness of the ray
tracing code.

Fig. 6 shows the diagonal elements of the Hessian matrix
H ¼ H xs þH xr ¼ diagðH 11;H 22Þ ð26Þ

for different P phases. S phases have similar curves but smaller jumps. By definition (5), H ii ¼ o2T=oq2

i , so its
physical meaning is the curvature in the qi direction of the wavefront defined by a constant travel time T ðrÞ. At
the source, since the radius of the forward wavefront is zero, Hxs goes to infinity. Similarly, H xr goes to infinity
at receiver, as we have seen in Section 3.2. The divergent properties of H at source and receiver are seen for all
phases in Fig. 6. Another divergent point with infinite wavefront curvature is found at the caustic, where a ray
bundle in the source–receiver plane converges to a single line. PP waves have caustics, which appear as the two
middle spikes in Fig. 6b. Caustics also change the sign of H11, because when passing through a caustic, the
wavefront changes from convex to concave (or from concave to convex) in the q1 direction. H22 is not influ-
enced by caustics, except at the antipode, which is a rare occasion. The small jumps of H11 in PKP visible in
Fig. 6d are due to the core-mantle boundary discontinuity. The small jumps of H11 in P and PP are due to the
660 km discontinuity; these jumps exist for PcP and PKP but are invisible at the scale of the figure. H22 does
not show jumps because there is no discontinuity in the q2 direction (perpendicular to the source–receiver
plane) for a 1D Earth.
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Fig. 8. Convergence of H11 with decreasing step size in kinematic ray tracing. The vertical axis is the mean of eH11
(see (31)) over the ray.

Three examples with different epicentral distances are shown for each phase. The horizontal solid line indicates the error tolerance level
determined by a detour time error of 0.1 s.
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4.2. Validation of traveltime computation

Validation of traveltimes is surprisingly difficult. Direct comparison with existing codes is of little use
because of differences in interpolation between the model nodes, which leads to small differences in travel time.
Allowing for such differences, the traveltimes computed agree well with those tabled for models IASP91 [9]
and AK135 [10], but this is insufficient as a test.

A good way to validate the traveltime computation in the kinematic ray tracing, which at the same time
gives us insight in the influence of the step size b used in the integration of (19), is to examine its convergent
behavior with decreasing b. We define a relative traveltime error estimate
eT ¼
jdT j

T
¼ jT ðbÞ � T ðbminÞj

T ðbminÞ
; ð27Þ
where bmin is the smallest step size. Some results are shown in Fig. 7, where the horizontal line represents a
tolerable error level (0.1 s at D = 30�, which is well below the typical observational uncertainty). The model
used is IASP91. It is clear that eT converges to a level well below the error tolerance for b < 300 km, which
is strong evidence that the traveltime computation is accurate. We note that the fourth-order Runge–Kutta
method samples the model at steps b=2, and that the actual step size in the crust and upper mantle is limited
to the distance between discontinuities. We can also see that T converges more slowly for a smaller epicentral
distance (Fig. 7a and b), partly because the ratio of b to the total ray length is larger, but mostly because a
shallow ray is much more strongly influenced by more rapidly varying upper mantle structure.

4.3. Validation of Hessian matrix computation

Several analytical results for elements of the Hessian matrix (26) are available ([4]):
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Fig. 9. Convergence of H22 with decreasing step size in kinematic ray tracing. The vertical axis is the mean of eH22
(see (32)) over the ray.

Three examples with different epicentral distances are shown for each phase. The horizontal solid line indicates the error tolerance level
determined by a detour time error of 0.1 s.
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f1 	 r cos i P 1 þ
p2

r
dc
dr
� 1

c

� �
Q1 � rs cos is ¼ 0; ð28Þ

f2 	 r cosðp� iÞP 3 þ
p2

r
dc
dr
� 1

c

� �
Q3 � rr cosðp� irÞ ¼ 0; ð29Þ

f3 	
p sin D

r2 sin / sinðD� /Þ ¼ H 22: ð30Þ
Since H 11 ¼ P 1=Q1 þ P 3=Q3 (see (11), (16)), (28) and (29) can be used to check the numerical precision of H11.
Let
eH11
¼ f1

rs cos is

����
����þ f2

rr cosðp� irÞ

����
����: ð31Þ
eH11
is of the same order as dH 11=H 11 and thus a good estimate of the numerical error of H11. Eq. (30) could be

used to eliminate the Runge–Kutta integration for H22 altogether, but has so far been kept because it provides
an independent check on correctness of the code and the influence of round-off errors. The numerical error of
H22 is
eH22
¼ H 22 � f3

f3

����
����: ð32Þ
Figs. 8 and 9 plot the convergence of the average eH11
and eH22

(over the ray) with decreasing step size used to
integrate (19), using the same examples as in Fig. 7. The horizontal solid line indicates a rough estimate of the
error tolerance level, which gives a detour time error estimate of 0.1 s. Deviation from the quadratic depen-
dence (3) is of course not included in this error. It can be seen that eH22

converges fast and well below the error
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tolerance level (Fig. 9), while eH11
converges relatively slowly and to a relatively high error (but still below the

error tolerance level, Fig. 8). The optimum step size, which is as large as possible while keeping the error below
the tolerance level, is thus determined by the behavior of eH11

. From Fig. 8, the optimum step size is about
30 km for S waves, 20 km for ScS and SKS waves, and 10 km for SS waves. The fact that eH11

is larger than
eH22

may be explained by the following. The numerical errors of H11 and H22 are due to the numerical inte-
gration of (12) and the application of continuity conditions (14). At every discontinuity, the application of (14)



Fig. 12. Map of crustal corrections dT cru through the entire crust for vertical S waves.

Fig. 13. Map of crustal corrections dT cru through the entire crust for S waves with an incident angle of 40� at background model surface.
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gives numerical errors to all P’s and Q’s except Q2;Q4, so H 22 ¼ P 2=Q2 þ P 4=Q4 has smaller numerical errors
than H 11 ¼ P 1=Q1 þ P 3=Q3. It can also be seen from (12) and (14) that the P 1;Q1; P 3;Q3-related formula are
more complicated than the P 2;Q2; P 4;Q4-related formula, which enhances the chance of a larger numerical er-
ror of H11.

Fig. 10 provides a detailed examination of eH11
and eH22

along a particular ray path. Again, we see that eH11

is 1-2 orders of magnitude larger than eH22
, as discussed before. The numerical errors increase toward source

and receiver, due to the divergent properties of H at source and receiver.

4.4. Validation of traveltime corrections

The ellipticity corrections are tested by comparison to the output of program ellip.f by Kennett [11],
which interpolates tables of dT ell. For P, PP, and PcP waves, absolute differences are at most 0.01, 0.02
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and 0.04 s, respectively (Fig. 11), which is acceptable in view of different models for the ellipticity (we used the
values from Huang et al. [6]).

Figs. 12 and 13 are maps of crustal corrections dT cru in (22) through the entire crust for S waves with zero
and steep incident angles, respectively. Fig. 12 is representative of global phases and Fig. 13 is representative of
regional phases (a surface incident angle of 40� corresponds to an epicentral distance less than 15�). For both
cases, continents have positive dT cru and oceans have negative dT cru. This is understandable because continen-
tal crust is thick and relatively slow (especially sedimentary layers), and thus t3D > tBG in (22). On contrary,
oceanic crust is thin and relatively fast (e.g. basalt), so t3D < tBG. At a first glance, it is surprising that the mag-
nitude of dT cru in Fig. 13 is larger than that in Fig. 12, considering the factor of cos i in (23). However, for the
same ray parameter, the incident angle in background model iBG is different from the incident angle in 3D
crust i3D, due to the different velocities. Taking Tibet as an example, a surface iBG ¼ 40� corresponds to a sur-
face i3D ¼ 13�, and thus a larger t3D.

5. Conclusions

A program raydyntrace.f for dynamic ray tracing in arbitrary models of the Earth for arbitrary ray
configurations has been tested on a number of frequently observed seismic phases. An accuracy of 0.1 s in
traveltimes and detour times is easily obtained, which is well within the demands imposed by typical observa-
tional uncertainties. In addition to providing the parameters needed to compute geometrical spreading and
paraxial ray traveltimes, the program computes traveltime corrections for crustal structure, topography,
and ellipticity, and computes attenuation such as t*.

Acknowledgments

We thank Ignace Loris for discussion. Yue Tian was supported by the National Science Foundation under
grant number EAR0309298.

References

[1] M. Calvet, S. Chevrot, Traveltime sensitivity kernels for PKP phases in the mantle, Phys. Earth Planet. Int. 153 (2005) 21–31.
[2] F. Dahlen, J. Tromp, Theoretical Global Seismology, Princeton University Press, 1998.
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[19] V. Červený, F. Hron, The ray series method and dynamic ray tracing systems for 3-D inhomogeneous media, Bull. Seis. Soc. Am. 70
(1980) 47–77.


	Dynamic ray tracing and traveltime corrections for global seismic tomography
	Introduction
	Overview
	Numerical procedures
	Hessian matrices
	Avoiding backward two-point ray tracing
	Geometrical spreading
	Kinematic two-point ray tracing
	Traveltime corrections
	Crustal corrections
	Topographic corrections
	Ellipticity corrections
	Dispersion corrections


	Numerical tests
	Ray tracing examples
	Validation of traveltime computation
	Validation of Hessian matrix computation
	Validation of traveltime corrections

	Conclusions
	Acknowledgments
	References


